Python 的一些日常高频写法总结!
来源丨网络
人生苦短,快学Python!
今天给大家准备了60个python日常高频写法,如果觉得有用,那就点赞收藏起来吧~
一、 数字
1 求绝对值
绝对值或复数的模
In [1]: abs(-6)Out[1]: 6
2 进制转化
十进制转换为二进制:
In [2]: bin(10)Out[2]: '0b1010'
Out[3]: '0o11'
Out[4]: '0xf'
3 整数和ASCII互转
十进制整数对应的ASCII字符
Out[1]: 'A'
ASCII字符
对应的十进制数Out[1]: 65
4 元素都为真检查
所有元素都为真,返回 True
,否则为False
Out[5]: FalseIn [6]: all([1,2,3])
Out[6]: True
5 元素至少一个为真检查
至少有一个元素为真返回True
,否则False
Out[7]: FalseIn [8]: any([0,0,1])
Out[8]: True
6 判断是真是假
测试一个对象是True, 还是False.
In [9]: bool([0,0,0])Out[9]: True
In [10]: bool([])
Out[10]: False
In [11]: bool([1,0,1])
Out[11]: True
7 创建复数
创建一个复数
In [1]: complex(1,2)Out[1]: (1+2j)
8 取商和余数
分别取商和余数
In [1]: divmod(10,3)Out[1]: (3, 1)
9 转为浮点类型
In [1]: float(3)Out[1]: 3.0
ValueError
:# ValueError: could not convert string to float: 'a'
10 转为整型
int(x, base =10) , x可能为字符串或数值,将x 转换为一个普通整数。如果参数是字符串,那么它可能包含符号和小数点。如果超出了普通整数的表示范围,一个长整数被返回。
In [1]: int('12',16)Out[1]: 18
11 次幂
base为底的exp次幂,如果mod给出,取余
In [1]: pow(3, 2, 4)Out[1]: 1
12 四舍五入
四舍五入,ndigits
代表小数点后保留几位:
Out[11]: 10.022
In [12]: round(10.05,1)
Out[12]: 10.1
13 链式比较
i = 3print(1 < i < 3) # False
print(1 < i <= 3) # True
二、 字符串
14 字符串转字节
字符串转换为字节类型
In [12]: s = "apple"In [13]: bytes(s,encoding='utf-8')
Out[13]: b'apple'
15 任意对象转为字符串
In [14]: i = 100In [15]: str(i)
Out[15]: '100'
In [16]: str([])
Out[16]: '[]'
In [17]: str(tuple())
Out[17]: '()'
16 执行字符串表示的代码
将字符串编译成python能识别或可执行的代码,也可以将文字读成字符串再编译。
In [1]: s = "print('helloworld')"In [2]: r = compile(s,"<string>", "exec")
In [3]: r
Out[3]: <code object <module> at 0x0000000005DE75D0, file "<string>", line 1>
In [4]: exec(r)
helloworld
17 计算表达式
将字符串str 当成有效的表达式来求值并返回计算结果取出字符串中内容
In [1]: s = "1 + 3 +5"...: eval(s)
...:
Out[1]: 9
18 字符串格式化
格式化输出字符串,format(value, format_spec)实质上是调用了value的__format__(format_spec)方法。
In [104]: print("i am {0},age{1}".format("tom",18))
i am tom,age18
3.1415926 | {:.2f} | 3.14 | 保留小数点后两位 |
---|---|---|---|
3.1415926 | {:+.2f} | +3.14 | 带符号保留小数点后两位 |
-1 | {:+.2f} | -1.00 | 带符号保留小数点后两位 |
2.71828 | {:.0f} | 3 | 不带小数 |
5 | {:0>2d} | 05 | 数字补零 (填充左边, 宽度为2) |
5 | {:x<4d} | 5xxx | 数字补x (填充右边, 宽度为4) |
10 | {:x<4d} | 10xx | 数字补x (填充右边, 宽度为4) |
1000000 | {:,} | 1,000,000 | 以逗号分隔的数字格式 |
0.25 | {:.2%} | 25.00% | 百分比格式 |
1000000000 | {:.2e} | 1.00e+09 | 指数记法 |
18 | {:>10d} | ' 18' | 右对齐 (默认, 宽度为10) |
18 | {:<10d} | '18 ' | 左对齐 (宽度为10) |
18 | {:^10d} | ' 18 ' | 中间对齐 (宽度为10) |
三、 函数
19 拿来就用的排序函数
排序:
In [1]: a = [1,4,2,3,1]In [2]: sorted(a,reverse=True)
Out[2]: [4, 3, 2, 1, 1]
In [3]: a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':'
...: xiaohong','age':20,'gender':'female'}]
In [4]: sorted(a,key=lambda x: x['age'],reverse=False)
Out[4]:
[{'name': 'xiaoming', 'age': 18, 'gender': 'male'},
{'name': 'xiaohong', 'age': 20, 'gender': 'female'}]
20 求和函数
求和:
In [181]: a = [1,4,2,3,1]In [182]: sum(a)
Out[182]: 11
In [185]: sum(a,10) #求和的初始值为10
Out[185]: 21
21 nonlocal用于内嵌函数中
def excepter(f):i = 0
t1 = time.time()
def wrapper():
try:
f()
except Exception as e:
nonlocal i
i += 1
print(f'{e.args[0]}: {i}')
t2 = time.time()
if i == n:
print(f'spending time:{round(t2-t1,2)}')
return wrapper
22 global 声明全局变量
先回答为什么要有global
,一个变量被多个函数引用,想让全局变量被所有函数共享。有的伙伴可能会想这还不简单,这样写:
def f():
print(i)
def g():
print(i)
pass
f()
g()
i
,程序没有报错,所以他们依然不明白为什么要用global
.但是,如果我想要有个函数对i
递增,这样:
i += 1
h()
UnboundLocalError
,原来编译器在解释i+=1
时会把i
解析为函数h()
内的局部变量,很显然在此函数内,编译器找不到对变量i
的定义,所以会报错。global
就是为解决此问题而被提出,在函数h内,显式地告诉编译器i
为全局变量,然后编译器会在函数外面寻找i
的定义,执行完i+=1
后,i
还为全局变量,值加1:
def h():
global i
i += 1
h()
print(i)
23 交换两元素
def swap(a, b):return b, a
print(swap(1, 0)) # (0,1)
24 操作函数对象
In [31]: def f():...: print('i\'m f')
...:
In [32]: def g():
...: print('i\'m g')
...:
In [33]: [f,g][1]()
i'm g
25 生成逆序序列
list(range(10,-1,-1)) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]26 函数的五类参数使用例子
python五类参数:位置参数,关键字参数,默认参数,可变位置或关键字参数的使用。
def f(a,*b,c=10,**d):print(f'a:{a},b:{b},c:{c},d:{d}')
c
不能位于可变关键字参数d
后.调用f:
In [10]: f(1,2,5,width=10,height=20)a:1,b:(2, 5),c:10,d:{'width': 10, 'height': 20}
b
实参后被解析为元组(2,5)
;而c取得默认值10; d被解析为字典.再次调用f:
In [11]: f(a=1,c=12)a:1,b:(),c:12,d:{}
注意观察参数a
, 既可以f(1)
,也可以f(a=1)
其可读性比第一种更好,建议使用f(a=1)。如果要强制使用f(a=1)
,需要在前面添加一个星号:
print(f'a:{a},b:{b}')
此时f(1)调用,将会报错:TypeError: f() takes 0 positional arguments but 1 was given
只能f(a=1)
才能OK.
说明前面的*
发挥作用,它变为只能传入关键字参数,那么如何查看这个参数的类型呢?借助python的inspect
模块:
...: print(name,val.kind)
...:
a KEYWORD_ONLY
b VAR_KEYWORD
a
的类型为KEYWORD_ONLY
,也就是仅仅为关键字参数。但是,如果f定义为:
def f(a,*b):print(f'a:{a},b:{b}')
...: print(name,val.kind)
...:
a POSITIONAL_OR_KEYWORD
b VAR_POSITIONAL
a
既可以是位置参数也可是关键字参数。27使用slice对象
生成关于蛋糕的序列cake1:
In [1]: cake1 = list(range(5,0,-1))In [2]: b = cake1[1:10:2]
In [3]: b
Out[3]: [4, 2]
In [4]: cake1
Out[4]: [5, 4, 3, 2, 1]
...: cake2 = [randint(1,100) for _ in range(100)]
...: # 同样以间隔为2切前10个元素,得到切片d
...: d = cake2[1:10:2]
In [6]: d
Out[6]: [75, 33, 63, 93, 15]
极为经典
,又拿它去切更多的容器对象。那么,为什么不把这种切法封装为一个对象呢?于是就有了slice对象。
定义slice对象极为简单,如把上面的切法定义成slice对象:
perfect_cake_slice_way = slice(1,10,2)#去切cake1
cake1_slice = cake1[perfect_cake_slice_way]
cake2_slice = cake2[perfect_cake_slice_way]
In [11]: cake1_slice
Out[11]: [4, 2]
In [12]: cake2_slice
Out[12]: [75, 33, 63, 93, 15]
对于逆向序列切片,slice
对象一样可行:
a_ = a[5:1:-1]
named_slice = slice(5,1,-1)
a_slice = a[named_slice]
In [14]: a_
Out[14]: [0, 9, 7, 5]
In [15]: a_slice
Out[15]: [0, 9, 7, 5]
28 lambda 函数的动画演示
有些读者反映,lambda
函数不太会用,问我能不能解释一下。
比如,下面求这个 lambda
函数:
return max(*lists, key=lambda v: len(v))
参数
v
的取值?lambda
函数有返回值吗?如果有,返回值是多少?
调用上面函数,求出以下三个最长的列表:
r = max_len([1, 2, 3], [4, 5, 6, 7], [8])print(f'更长的列表是{r}')
结论:
参数v的可能取值为
*lists
,也就是tuple
的一个元素。lambda
函数返回值,等于lambda v
冒号后表达式的返回值。
四、 数据结构
29 转为字典
创建数据字典
In [1]: dict()Out[1]: {}
In [2]: dict(a='a',b='b')
Out[2]: {'a': 'a', 'b': 'b'}
In [3]: dict(zip(['a','b'],[1,2]))
Out[3]: {'a': 1, 'b': 2}
In [4]: dict([('a',1),('b',2)])
Out[4]: {'a': 1, 'b': 2}
30 冻结集合
创建一个不可修改的集合。
In [1]: frozenset([1,1,3,2,3])Out[1]: frozenset({1, 2, 3})
set
那样的add
和pop
方法31 转为集合类型
返回一个set对象,集合内不允许有重复元素:
In [159]: a = [1,4,2,3,1]In [160]: set(a)
Out[160]: {1, 2, 3, 4}
32 转为切片对象
class slice(start, stop[, step])
返回一个表示由 range(start, stop, step) 所指定索引集的 slice对象,它让代码可读性、可维护性变好。
In [1]: a = [1,4,2,3,1]In [2]: my_slice_meaning = slice(0,5,2)
In [3]: a[my_slice_meaning]
Out[3]: [1, 2, 1]
33 转元组
tuple()
将对象转为一个不可变的序列类型
In [17]: i_am_tuple = tuple(i_am_list)
In [18]: i_am_tuple
Out[18]: (1, 3, 5)
五、 类和对象
34 是否可调用
检查对象是否可被调用
In [1]: callable(str)Out[1]: True
In [2]: callable(int)
Out[2]: TrueIn [18]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...
In [19]: xiaoming = Student('001','xiaoming')
In [20]: callable(xiaoming)
Out[20]: False
xiaoming()
, 需要重写Student
类的__call__
方法:...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...: def __call__(self):
...: print('I can be called')
...: print(f'my name is {self.name}')
...:
In [2]: t = Student('001','xiaoming')
In [3]: t()
I can be called
my name is xiaoming
35 ascii 展示对象
调用对象的 __repr__
方法,获得该方法的返回值,如下例子返回值为字符串
def __init__(self,id,name):
self.id = id
self.name = name
def __repr__(self):
return 'id = '+self.id +', name = '+self.name
调用:
>>> xiaoming = Student(id='1',name='xiaoming')>>> xiaoming
id = 1, name = xiaoming
>>> ascii(xiaoming)
'id = 1, name = xiaoming'
36 类方法
classmethod
装饰器对应的函数不需要实例化,不需要 self
参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等。
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...: @classmethod
...: def f(cls):
...: print(cls)
37 动态删除属性
删除对象的属性
In [1]: delattr(xiaoming,'id')In [2]: hasattr(xiaoming,'id')
Out[2]: False
38 一键查看对象所有方法
不带参数时返回当前范围
内的变量、方法和定义的类型列表;带参数时返回参数
的属性,方法列表。
Out[96]:
['__class__',
'__delattr__',
'__dict__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__le__',
'__lt__',
'__module__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'__weakref__',
'name']
39 动态获取对象属性
获取对象的属性
In [1]: class Student():...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: getattr(xiaoming,'name') # 获取xiaoming这个实例的name属性值
Out[3]: 'xiaoming'
40 对象是否有这个属性
In [1]: class Student():...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: hasattr(xiaoming,'name')
Out[3]: True
In [4]: hasattr(xiaoming,'address')
Out[4]: False
41 对象门牌号
返回对象的内存地址
In [1]: id(xiaoming)Out[1]: 98234208
42 isinstance
判断object是否为类classinfo的实例,是返回true
In [1]: class Student():...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: isinstance(xiaoming,Student)
Out[3]: True
43 父子关系鉴定
In [1]: class undergraduate(Student):...: def studyClass(self):
...: pass
...: def attendActivity(self):
...: pass
In [2]: issubclass(undergraduate,Student)
Out[2]: True
In [3]: issubclass(object,Student)
Out[3]: False
In [4]: issubclass(Student,object)
Out[4]: True
Out[1]: True
44 所有对象之根
object 是所有类的基类
In [1]: o = object()In [2]: type(o)
Out[2]: object
45 创建属性的两种方式
返回 property 属性,典型的用法:
class C:def __init__(self):
self._x = None
def getx(self):
return self._x
def setx(self, value):
self._x = value
def delx(self):
del self._x
# 使用property类创建 property 属性
x = property(getx, setx, delx, "I'm the 'x' property.")
def __init__(self):
self._x = None
@property
def x(self):
return self._x
@x.setter
def x(self, value):
self._x = value
@x.deleter
def x(self):
del self._x
46 查看对象类型
class type
(name, bases, dict)
传入一个参数时,返回 object 的类型:
In [1]: class Student():...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...:
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: type(xiaoming)
Out[3]: __main__.Student
In [4]: type(tuple())
Out[4]: tuple
47 元类
xiaoming
, xiaohong
, xiaozhang
都是学生,这类群体叫做 Student
.
Python 定义类的常见方法,使用关键字 class
...: pass
xiaoming
, xiaohong
, xiaozhang
是类的实例,则:xiaohong = Student()
xiaozhang = Student()
__class__
属性,返回的便是 Student
类Out[38]: __main__.Student
Student
类有 __class__
属性,如果有,返回的又是什么?Out[39]: type
type
那么,我们不妨猜测:Student
类,类型就是 type
,换句话说,Student
类就是一个对象,它的类型就是 type
,所以,Python 中一切皆对象,类也是对象
Python 中,将描述 Student
类的类被称为:元类。
按照此逻辑延伸,描述元类的类被称为:元元类,开玩笑了~ 描述元类的类也被称为元类。
聪明的朋友会问了,既然 Student
类可创建实例,那么 type
类可创建实例吗?如果能,它创建的实例就叫:类 了。你们真聪明!
说对了,type
类一定能创建实例,比如 Student
类了。
In [41]: Student
Out[41]: __main__.Student
class
关键字创建的 Student
类一模一样。Python 的类,因为又是对象,所以和 xiaoming
,xiaohong
对象操作相似。支持:
赋值
拷贝
添加属性
作为函数参数
In [44]: Student.class_property = 'class_property' # 添加类属性
In [46]: hasattr(Student, 'class_property')
Out[46]: True
Tim Peters
都说:“元类就是深度的魔法,99%的用户应该根本不必为此操心。
六、工具
48 枚举对象
返回一个可以枚举的对象,该对象的next()方法将返回一个元组。
In [1]: s = ["a","b","c"]...: for i ,v in enumerate(s,1):
...: print(i,v)
...:
1 a
2 b
3 c
49 查看变量所占字节数
In [1]: import sysIn [2]: a = {'a':1,'b':2.0}
In [3]: sys.getsizeof(a) # 占用240个字节
Out[3]: 240
50 过滤器
在函数中设定过滤条件,迭代元素,保留返回值为True
的元素:
In [2]: list(fil)
Out[2]: [11, 45, 13]
51 返回对象的哈希值
返回对象的哈希值,值得注意的是自定义的实例都是可哈希的,list
, dict
, set
等可变对象都是不可哈希的(unhashable)
Out[1]: 6139638
In [2]: hash([1,2,3])
# TypeError: unhashable type: 'list'
52 一键帮助
返回对象的帮助文档
In [1]: help(xiaoming)Help on Student in module __main__ object:
class Student(builtins.object)
| Methods defined here:
|
| __init__(self, id, name)
|
| __repr__(self)
|
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
53 获取用户输入
获取用户输入内容
In [1]: input()aa
Out[1]: 'aa'
54 创建迭代器类型
使用iter(obj, sentinel)
, 返回一个可迭代对象, sentinel可省略(一旦迭代到此元素,立即终止)
In [2]: for i in iter(lst):
...: print(i)
...:
1
3
5In [1]: class TestIter(object):
...: def __init__(self):
...: self.l=[1,3,2,3,4,5]
...: self.i=iter(self.l)
...: def __call__(self): #定义了__call__方法的类的实例是可调用的
...: item = next(self.i)
...: print ("__call__ is called,fowhich would return",item)
...: return item
...: def __iter__(self): #支持迭代协议(即定义有__iter__()函数)
...: print ("__iter__ is called!!")
...: return iter(self.l)
In [2]: t = TestIter()
In [3]: t() # 因为实现了__call__,所以t实例能被调用
__call__ is called,which would return 1
Out[3]: 1
In [4]: for e in TestIter(): # 因为实现了__iter__方法,所以t能被迭代
...: print(e)
...:
__iter__ is called!!
1
3
2
3
4
5
55 打开文件
返回文件对象
In [1]: fo = open('D:/a.txt',mode='r', encoding='utf-8')In [2]: fo.read()
Out[2]: '\ufefflife is not so long,\nI use Python to play.'
字符 | 意义 |
---|---|
'r' | 读取(默认) |
'w' | 写入,并先截断文件 |
'x' | 排它性创建,如果文件已存在则失败 |
'a' | 写入,如果文件存在则在末尾追加 |
'b' | 二进制模式 |
't' | 文本模式(默认) |
'+' | 打开用于更新(读取与写入) |
56 创建range序列
range(stop)
range(start, stop[,step])
生成一个不可变序列:
In [1]: range(11)Out[1]: range(0, 11)
In [2]: range(0,11,1)
Out[2]: range(0, 11)
57 反向迭代器
In [1]: rev = reversed([1,4,2,3,1])In [2]: for i in rev:
...: print(i)
...:
1
3
2
4
1
58 聚合迭代器
创建一个聚合了来自每个可迭代对象中的元素的迭代器:
In [1]: x = [3,2,1]In [2]: y = [4,5,6]
In [3]: list(zip(y,x))
Out[3]: [(4, 3), (5, 2), (6, 1)]
In [4]: a = range(5)
In [5]: b = list('abcde')
In [6]: b
Out[6]: ['a', 'b', 'c', 'd', 'e']
In [7]: [str(y) + str(x) for x,y in zip(a,b)]
Out[7]: ['a0', 'b1', 'c2', 'd3', 'e4']
59 链式操作
from operator import (add, sub)def add_or_sub(a, b, oper):
return (add if oper == '+' else sub)(a, b)
add_or_sub(1, 2, '-') # -1
60 对象序列化
对象序列化,是指将内存中的对象转化为可存储或传输的过程。很多场景,直接一个类对象,传输不方便。
但是,当对象序列化后,就会更加方便,因为约定俗成的,接口间的调用或者发起的 web 请求,一般使用 json 串传输。
实际使用中,一般对类对象序列化。先创建一个 Student 类型,并创建两个实例。
class Student():def __init__(self,**args):
self.ids = args['ids']
self.name = args['name']
self.address = args['address']
xiaoming = Student(ids = 1,name = 'xiaoming',address = '北京')
xiaohong = Student(ids = 2,name = 'xiaohong',address = '南京')
with open('json.txt', 'w') as f:
json.dump([xiaoming,xiaohong], f, default=lambda obj: obj.__dict__, ensure_ascii=False, indent=2, sort_keys=True)
{
"address":"北京",
"ids":1,
"name":"xiaoming"
},
{
"address":"南京",
"ids":2,
"name":"xiaohong"
}
]
来源:https://github.com/jackzhenguo/python-small-example
推荐阅读
新书上市
《小红书运营:爆款内容+实操案例+高效种草+引流变现》
从零开始运营小红书:4大引流方法+5大案例剖析+6大内容创作要点,深入解析小红书头部博主运营案例,助你全方面掌握小红书运营的底层逻辑,看这一本书就够了。
↓ 点击阅读原文,查看作者新书!